
(FrÄndz ver. 0.5)

What it is, What it can, How it works

[http://fraendz.sourceforge.net]

Matthias Ihrke∗

April 28, 2005

Abstract

This paper includes a short, technical introduction to the FrÄndz online
system. Implementation details are considered.

∗E-Mail: mihrke@uni-goettingen.de

1

Contents 2

Contents

1 What is FrÄndz? 3

2 Installation 4
2.1 Script-based Installation . 4
2.2 Manual Installation . 4

3 Structure of the FrÄndz-package 6

4 Implementation 8
4.1 Con�guration - fraendz.config . 8
4.2 Templates - fraendz.template . 8
4.3 Security - fraendz.security . 10
4.4 Storage - fraendz.userio . 13
4.5 Chat - fraendz.chatserver . 13

5 Administration - fraendz.admin 16
5.1 Tools . 16

6 Future Plans 16

1 WHAT IS FRÄNDZ? 3

1 What is FrÄndz?

FrÄndz (pronounced like �friends�) is an intimate online meeting-place for good
friends. FrÄndz runs with minimal dependencies (only standard python modules
are used; no other libraries etc. required). It features a secure user management
and a �exible con�guration mechanism.
Features in the current version are:

� a username/password based authenti�cation (very secure when run over the
https protocol),

� user registration with personal picture,

� an internal messaging system,

� a discussion functionality,

� a news functionality,

� an address book,

� a chat,

� a skinnable layout (i.e. can be changed by every user for himself),

� RSS feeds for new messages (every user), entries in the forum, logbook entries
(for admin) and news-entries,

� and internal user-homepages.

The System is implemented 100% in Python1.
Since FrÄndz operates on plain �les and directories, it is probably not suitable for a
huge amount of users. It has been tested with about 20 users. However, it is possible
to reimplement the data-access functions (exclusively located in the security-module
(fraendz.security) and the userio-module (fraendz.userio) to access a SQLite2-
database via the PySQL module to allow a higher number of users. In the current
version, this has been omitted to keep the number of dependencies very low.
An in-use version of the system information on FrÄndZ as well as a project page for
the system covering the API-documentation and news concerning the system can be
found under the FrÄndZ-Homepage: http://fraendz.sourceforge.net.
A CVStrac3-page with the neweset CVS snapshot and additional information can
be found under can be accessed under this URL, too.

1http://www.python.org
2http://www.sqlite.org
3http://www.cvstrac.org

http://www.python.org
http://www.sqlite.org
http://fraendz.sourceforge.net
http://www.cvstrac.org
http://www.sqlite.org
http://www.cvstrac.org

2 INSTALLATION 4

2 Installation

To install FrÄndz, you will need the following:

� a web-server,

� CGI-support on the webserver,

� a Python-Interpreter on the webserver,

� optionally, if you want to enable RSS feeds for the users, you will need to run
the Apache Webserver with the htpasswd utility installed.

An installation script is provided under fraendz/tools. It is highly recommended to
use this script, because all �le and directory permissions will be set conveniently.
However, manual instructions will be provided as well.

2.1 Script-based Installation

For a fast and easy installation, simply run the install script, located under the
tools-section of your copy:

tar xvfz fraendz05.tar.gz
cd fraendz05/tools
python install.py

This will start the interactive installation production, which was written to be pretty
self-explanatory. However, it might be helpful to know, that you have to provide
three directories for the script: one outside the scope of the webserver where libraries
and user information will be stored, one inside the scope of the web server for static
html-pages and images and a cgi-bin directory.
If you should encounter problems after the installation, run the script

python setpermissions.py

from your newly installed fraendz/tools directory.

2.2 Manual Installation

If you encounter problems during the automatic installation, refer to this section as
well as section 3 on page 6 for details of the structure of the FrÄndz-package.
This is basically what the script does

1. Create a directory outside the scope of the webserver and copy the doc,
documents, templates, fraendz and tools part of the package to this new
directory (e.g. if HTML documents on the server lie under �/public_html/,
create the directory �/fraendz).

2. Create a directory in the scope of the webserver and copy the contents of
fraendz/htdocs to this directory (e.g. create �public_html/fraendz)

2 INSTALLATION 5

3. Create a directory in the cgi-bin directory of your webserver
(e.g. �public_html/cgi-bin) and copy everything from fraendz/front-end
to this directory (e.g. create �public_html/cgi-bin/fraendz).

4. If RSS is enabled (variable in config.py set to 1), copy the rssfeeds to the
appropriate locations.

5. create world writable directories fraendz/users and fraendz/users/admin.

6. Open the the con�g-module in your installation
(e.g. �fraendz/lib/config.py).

a) Have a look at the variables (all in upper case) and adapt them according
to your con�guration.

b) It is probably su�cient to adapt the following variables (see listing 1:

Listing 1: fraendz.con�g
1 SYSTEM_ROOT=' /Users / t h i a s /web/ i n t e r n a l / '
2 # cgi−bin root
3 CGI_ROOT=SYSTEM_ROOT+' htdocs / cg i−bin / '
4 # l i b r a r y
5 LIB_DIR=SYSTEM_ROOT+' l i b / '
6 # image d i r e c t o r y
7 PIC_ROOT=SYSTEM_ROOT+' p i c s / '
8 # user−d i r e c t o r i e s
9 USER_DIRS=SYSTEM_ROOT+' use r s / '
10 # cen t r a l user−con t ro l f i l e
11 USER_FILE=SYSTEM_ROOT+' . u s e r s '
12 # template d i r e c t o r y
13 TEMPLATE_DIR=SYSTEM_ROOT+' templates / '
14
15 ## here a l l l o c a t i on s f o r web−access
16 WEB_ROOT=' / i n t e r n a l / '
17 # cgi−bin root
18 WEB_CGI_ROOT=' / in t e rna l−bin / '
19 # image d i r e c t o r y
20 WEB_PIC_ROOT=WEB_ROOT+' p i c s / '

7. to �nish the installation, the fraendz-modules located in the fraendz/fraendz
directory must be made accessible to the front-end scripts. There are generally
two possibilities to do this,

a) you �nd some way of storing the fraendz/fraendz folder in a standard
python-module position,

b) building a �le called "path" in your fraendz-cgi directory, that includes
information about the location of the module (downside: possible security
issue, as this �le is world-readable and available to the webserver)

3 STRUCTURE OF THE FRÄNDZ-PACKAGE 6

3 Structure of the FrÄndz-package

The structure of a FrAendZ package is as follows (assumed by the installation script)

fraendz[ver]
|
---- doc - documentation
|
---- documents - some static documents
|
---- fraendz - the python modules!
|
---- front-end - the front-end cgi's (without rss)
|
---- htdocs - static html's and pics
|
---- rssfeeds - cgi's for the RSS support
|
---- templates - tpl's (skins)
|
---- tools - installation and administration tools

The fraendz system is divided into front-end scripts (the actual cgi-scripts called
by the webserver) and underlying library scripts in fraendz/fraendz. The front-
end scripts basically call functions from the library modules to create the dynamic
webpages for the user.
This is a list of currently available front-end scripts and their function:

3 STRUCTURE OF THE FRÄNDZ-PACKAGE 7

User-functionality
adminlogin.py prepares the login �eld for adminable users

adressbook.py shows an addressbook of all currently registered users

chat.py wrapper for the chat Java-Applet; currently not used (see
htmlchat.py)

forum.py provides the forum functionality

homepage.py shows user homepages and allows for editing of the user's
own homepage

htmlchat.py the currently used chat-client; an inline HTML object with
automatic refresh is used (CAUTION: not supported by all
browsers!)

message.py provides the internal-messaging functionality

news.py provides the news-system

portal.py startpage after login and navigation portal

register.py possibility to change user's login information (and pass-
word)

showhtml.py wrapper to display Webpages that lie outside the scope of
the webserver

showimg.py wrapper to display images that lie outside the scope of the
webserver

Admin-functionality
adminportal.py start and navigation page for adminable users af-

ter login as admin

chat_management.py management of the chat (not yet implemented!)

forum_management.py management of the forum (not yet implemented!)

news_management.py management of the news system (not yet imple-
mented!)

parameter.py displays a list of all de�ned FrÄndz-variables by
parsing the source code at runtime

run.py lists all scripts and extracts the possible parame-
ters and o�ers a webinterface to run these scripts
with arbitrary parameter values (very useful for
testing purposes)

showscript.py displays the source code of one of the scripts

usermanagement.py useradd, userdel and userkick from the webinter-
face

RSS-feeds
logfilefeed.py displays the last few entries in the log�le as RSS feed

messagefeed.py displays user's messages in the inbox as RSS feed

forumfeed.py displays the last entries made to the forum as RSS feed

newsfeed.py displays the latest news in the system as RSS feed

4 IMPLEMENTATION 8

The underlying modules will be discussed in the next sections.

4 Implementation

I tried to implement the system in a way to allow a topmost �exibility. All major
functions (such as access to stored data, security related functions or de�nitions) are
implemented in the modules of the fraendz-package. The design (look and feel) of
the system is separated from the implementation by an own template system (see
section 4.2). Finally, the scripts read directly on the �les and directories, hence
allowing a very �exible building of the webpages (simply removing or providing a
�le changes the page, no database update is required).
In the code, I follow an own naming convention of using upper cases for all global
variables (constants).

4.1 Con�guration - fraendz.config

The module fraendz.config includes the general con�guration of the system. This
module is included in all other modules and must hence not be imported anywhere
else.
All absolute declarations (of pathes or ip-addresses) are made here. A change in this
�le will e�ect the whole system.

4.2 Templates - fraendz.template

For an easy way of changing the layout of the system, I implemented an own way
of using templates rather than mixing HTML and Python. Templates are stored in
the fraendz/templates directory and include the su�x .tpl.
Templates are generally pure HTML-code, but can include dynamical elements (vari-
ables or other templates) which is indicated by wrapping the upper-case variable
name in curly braces and double daggers (e.g. {#USERNAME#}). Each tpl-�le
consists of several template-parts. Each part is surrounded by

%%begin{<template-name>}
%%end{<template-name>}

tags. When a template should include another template, the syntax looks as follows:

{#template::<primary-name>:<part-name>#}

where the last part is optionally (if omitted, the default 'main' will be used).
Care should be taken not to de�ne circular inclusions! If one template includes
another template which in turn includes the �rst template, this would result in an
in�nite recursion!
The design is realized from the front-end script, by calling fraendz.template's func-
tion getTemplate() (see listing 2).

4 IMPLEMENTATION 9

Listing 2: fraendz.template.getTemplate()
1 def getTemplate (template , s=l o c a l s ()) :
2 """
3 * new func t i on to prov ide the template−system
4 * same method as in e a r l i e r ver s ion , but more
5 s o ph i s t i c a t e d
6 * e . g . r e c u r s i v e template i n c l ud i ng s p o s s i b l e
7 − s ee documentation f o r d e t a i l s
8 """
9 import os , re
10 # de f a u l t templa te par t i s main
11 i f l en (template . s p l i t (' : ')) < 2 :
12 template += ' : main '
13 try : f i l e , part = template . s p l i t (' : ')
14 except : return TEMPLATE_ERROR
15
16 """
17 open and read out template f i l e
18 and get the de s i r ed part in the template f i l e
19 (s ee documentation f o r d e t a i l s)
20 −− t h i s i s a f a l l b a c k mechanism , i f the de s i r ed template
21 i s not found in the sk in d i r e c to ry , the d e f au l t sk in ' s
22 template i s used
23 """
24 i f s . has_key ('SKIN ') :
25 try :
26 f = open (os . path . j o i n (s ['SKIN '] , f i l e+' . t p l ') , ' r ')
27 content = f . read ()
28 f . c l o s e ()
29 partcontent = re . search ('%%begin \{ '+part+' \} '+\
30 ' (?P<temp>.*)%%end\{ '+part+' \} ' ,\
31 content , re .DOTALL) . group (' temp ')
32 except :
33 f=open (os . path . j o i n (TEMPLATE_DIR, f i l e+' . t p l ') , ' r ')
34 content=f . read ()
35 f . c l o s e ()
36 partcontent = re . search ('%%begin \{ '+part+' \} '+\
37 ' (?P<temp>.*)%%end\{ '+part+' \} ' ,\
38 content , re .DOTALL) . group (' temp ')
39 else :
40 try :
41 f=open (os . path . j o i n (TEMPLATE_DIR, f i l e+' . t p l ') , ' r ')
42 content=f . read ()
43 f . c l o s e ()
44 partcontent = re . search ('%%begin \{ '+part+' \} '+\
45 ' (?P<temp>.*)%%end\{ '+part+' \} ' ,\
46 content , re .DOTALL) . group (' temp ')
47 except :
48 return TEMPLATE_ERROR
49
50 ### su b s t i t u t e v a r i a b l e s in par t con ten t
51 found=re . f i n d a l l (' \{\#[A−Za−z1−9_]+\#\} ' , par tcontent)
52 for f in found :
53 try :
54 # c a l l e va l wi th d i c t i ona r i e s , d e f i n i n g the scope
55 eva l (f [2 : −2] , s , g l o b a l s ())
56 except :
57 continue
58 partcontent=re . sub (f , s t r (eva l (f [2 : −2] , s , g l o b a l s ())) , \
59 partcontent)
60
61 ### su b s t i t u t e l i n k s to o ther temp la te s
62 found=re . f i n d a l l ('\{\#template : : [A−Za−z1−9_\:]+\#\} ' , par tcontent)
63 for f in found :
64 temp = f [2 : −2]
65 try : name = temp . s p l i t (' : : ') [1]
66 except : return TEMPLATE_ERROR
67 ### RECURSION
68 s ub s t i t u t e = getTemplate (name , s)
69 partcontent = re . sub (f , sub s t i tu t e , par tcontent)
70
71 return partcontent

4 IMPLEMENTATION 10

The substitution of the placeholders in the template �le is done through regular
expressions. The evaluation is done in the scope of a user-supplied dictionary and
the globals() dictionary. Thus, the variables corresponding to the placeholder in
the template �le can be speci�ed either in the template module itself, in a module
that is imported by the template module or in the front end script that sends in the
dictionary to the getTemplate()-function (see for example listing 3).

Listing 3: snippet from portal.py
1 scope=de f ineDe fau l tScope (user=user , code=code)
2 ### user Adminable??
3 i f userAdminable (user) :
4 scope ['ADMIN_LINE '] = getTemplate (' po r t a l : admin ' , scope)
5 else : scope ['ADMIN_LINE '] = ' '
6
7 ### crea te SKIN− l i s t
8 scope ['LIST_SKINS ']= ' '
9 for sk in in SKINS :
10 scope ['LIST_SKINS '] += getTemplate (' po r t a l : l i s t_ s k i n s ' ,\
11 { 'SKIN_NAME' : sk in })
12
13 # pr in t Welcome−message and t a b l e o f content s . . .
14 print getTemplate (' po r t a l ' , scope)

All static variables are de�ned in template.py, but since the security system (see
section 4.3) demands a variable nature of all links (user authenti�cation must be
present, which changes with each login), these must be de�ned from the front end
script by calling the template.defineDefaultScope() function.
At the present point I'm not sure anymore that this is a clever way to implement
this functionality, as the local variable scope is crowded with unimportant variable-
de�nitions. I think about exporting this function to another �le (or maybe even in
a database) that is included when actually running getTemplate().

4.3 Security - fraendz.security

The security-module (fraendz.security) deals with security related issues. Be-
cause all potentially sensitive data is stored outside the scope of the webserver, it
can only be accessed through a CGI-script that provides a dynamically generated
webpage of this information.
There is a central �le (fraendz/.users) in which username and encrypted password
for each user is stored. When a user logs in the system via the login page, the
unencrypted password is sent to portal.py which immediately encrypts it. Because
of this procedure, at least the login procedure must be handled using the https-
protocol4.
With each login, a time stamp is set up in the users directory (fraendz/users/<user>).
This stamp is valid for a prede�ned period of time (30 minutes by default), which
ensures that the pages cannot be accessed even if the user forgets to log out. This
stamp is intermingled with the users password an some nonsense letters to produce
a code that must be delivered along with the username to each and every script (see
listing 4).

4In contrast to the http-protocol, the https-protocol encrypts all data before sending it over the
internet.

4 IMPLEMENTATION 11

Listing 4: intermingling of password and username in security.py
1 def encodePw (user , pw) :
2 """
3 * takes the password and the user stamp and combines i t
4 to a c r yp t i c code which i s used to forward the user
5 """
6 from random import cho i c e
7
8 stamp = s t r (getStamp (user))
9
10 code = ' '
11 # crea te 5 random l e t t e r s
12 for i in range (RANDOM_LETTERS) :
13 code += cho i c e (ALPHABET)
14 # append the password
15 code += pw
16 # append the d e l im i t e r
17 code += DELIMITER
18 # append stamp
19 code += stamp
20 code += DELIMITER
21 # more random l e t t e r s
22 for i in range (RANDOM_LETTERS) :
23 code += cho i c e (ALPHABET)
24 return code

This code is unique for each user-session.
That means, that before a script sends information to the user, the delivered security
information is processed, to check if the user has a valid registration (see listing 5).

Listing 5: standard security checks performed in security.standardSecurityChecks()
1 form=cg i . F i e ldSto rage ()
2 print ' Content−type : t ex t /html\n '
3
4 ### ABORT
5 # i s the s c r i p t c a l l e d with the co r r e c t parameters?
6 i f not ' stamp ' in form . keys () or not ' u se r ' in form . keys () :
7 printHTMLPart (' upper_empty ')
8 printHTMLPart (' i l l e g a l ')
9 printHTMLPart (' lower_empty ')
10 sys . e x i t ()
11 code = form ["stamp"] . va lue
12 user=form [" user "] . va lue
13
14 ### LOGIN
15 # i s the user r e g i s t e r e d ?
16 pw, stamp = decodePw(code)
17 i f check I fUse rReg i s t e r ed (user , pw) :
18 printHTMLPart (' upper_empty ')
19 printHTMLPart (' n o t r e g i s t e r e d ')
20 printHTMLPart (' lower_empty ')
21 sys . e x i t ()
22 i f checkStamp (user , stamp) :
23 printHTMLPart (' upper_empty ')
24 printHTMLPart (' i l l e g a l ')
25 printHTMLPart (' lower_empty ')
26 sys . e x i t ()
27 i f checkStampTime (user , stamp) :
28 printHTMLPart (' upper_empty ')
29 printHTMLPart (' t imeout ')
30 printHTMLPart (' lower_empty ')
31 sys . e x i t ()

However, the storage of the sensitive information outside the scope of the webserver
has its downside. It gets more di�cult to access complete documents that have

4 IMPLEMENTATION 12

been uploaded by the users (e.g. their personal picture). Therefore wrapper scripts
(showimg.py and showhtml.py, see listing 6 for the code for image presentation)
are provided that allow the display of this information.

Listing 6: showimg.py - displays an image that is stored outside the webservers scope
1 #!/ usr / bin /env python
2 """
3 showimg . py − part o f f raendz
4
5 * r e tu rn s an image as to be d i sp layed by the webbrowser
6 −> can be acce s s ed by other cg i−s c r i p t s v ia
7
8 * i s necessary , because p i c s l i e in user d i r s , which are not
9 a c c e s s i b l e by normal l i n k s
10
11 PARAMETERS:
12 user , stamp − standard
13 img − ' imagename . ext '
14 whichuser − ' username ' # whose p i c ?
15 """
16
17 import cg i , sys , os . path
18 from f raendz . s e c u r i t y import *
19 from f raendz . c on f i g import *
20 i f DEBUG: import cg i tb ; c g i tb . enable () # debug
21
22 form=cg i . F i e ldSto rage ()
23 # ex t r a c t s form va lue s
24 try :
25 user = form [' user '] . va lue
26 img = form [' img '] . va lue
27 code = form [' stamp '] . va lue
28 except :
29 print ' Error − wrong form−va lue s '
30 sys . e x i t ()
31
32 # secu r i t y checks
33 pw, stamp = decodePw(code)
34 i f check I fUse rReg i s t e r ed (user , pw) or checkStamp (user , stamp)\
35 or checkStampTime (user , stamp) :
36 print ' Error − username/password not c o r r e c t '
37 sys . e x i t ()
38
39 # whose p i c t u r e ?
40 i f ' whichuser ' in form . keys () :
41 username = form [' whichuser '] . va lue
42 else :
43 username = user
44
45 # d i s p l a y the image
46 root , ext = os . path . s p l i t e x t (img)
47 try :
48 imgcontent = open (os . path . j o i n (USER_DIRS, username , img) , ' rb ')
49 except :
50 print ' Error opening o f img not p o s s i b l e '
51 sys . e x i t ()
52
53 # content−l i n e
54 print ' Content−type : image/%s\n '%ext [1 :]
55 print imgcontent . read ()
56 imgcontent . c l o s e ()

4 IMPLEMENTATION 13

4.4 Storage - fraendz.userio

As mentioned before, user data is stored in a directory structure. Each user owns a
home-directory under fraendz/users, where all information provided by the user
is stored. The functions in userio.py provide access to this information.
The functions in this module must be primarily reimplemented when switching to a
database.

4.5 Chat - fraendz.chatserver

The chat server a�ords somehow the most sophisticated code. The server listens on
a given port for incoming TCP connections (socket.py is used for the networking)
and handles requests from the client. At the moment only three request types are
implemented, these being

1. POST

2. GET and

3. QUIT.

After the connection between client and server has been established (see listing 7),
the server waits for one of the above keywords and delivers or receives the informa-
tion.

Listing 7: snippet of chatserver.py that handles the request after a connection has been
established

1 def handler (csocket , s) :
2 """
3 c a l l e d as a thread f o r each connect ion
4 """
5 global qu i t
6 r eque s t = csocke t . recv (BUFFER)
7 i f not r eque s t in ALLOWED_REQUESTS:
8 s . l og ("wrong reque s t : %s , c l o s i n g connect ion \n"%reques t)
9 c socke t . c l o s e ()
10 e l i f r eque s t == 'POST ' :
11 username = csocke t . recv (BUFFER)
12 i f not username in ALLOWED_USERS:
13 s . l og (" user '%s ' not al lowed , c l o s i n g "+\
14 " connect ion \n"%username)
15 c socke t . c l o s e ()
16 else :
17 msg = csocke t . recv (BUFFER)
18 s . update (username , msg)
19 c socke t . send (CONFIRM)
20 e l i f r eque s t == 'GET' :
21 c socke t . s e nda l l (s . getMessages ())
22 e l i f r eque s t == 'STATUS ' :
23 pass
24 e l i f r eque s t == 'QUIT ' :
25 s . l og ('QUITTING because o f user r eque s t . . . ')
26 qu i t = 1
27
28 c socke t . c l o s e ()

4 IMPLEMENTATION 14

Each connection is handled in a separate thread, so that the server can continue to
listen to incoming requests. The requests are stored as socket objects in a queue
which is processed one after another (see listing 8).

Listing 8: snippet of chatserver.py that shows the threaded processing
1 def l i s t e n (s) :
2 global conL i s t
3 while 1 :
4 c socke t = s . l i s t e n ()
5 i f c socke t : # connect ion accepted
6 conL i s t . append (c socke t)
7 else : pass
8
9
10 ### main program
11 global conList , qu i t
12 qu i t = 0
13 conL i s t = []
14
15 def main () :
16 #i f __name__ == '__main__ ' :
17 # i n i t i a l i z e ChatServer o b j e c t
18 s = ChatServer ()
19 thread . start_new_thread (l i s t e n , (s ,))
20 while 1 :
21 i f conL i s t :
22 thread . start_new_thread (handler , (conLi s t . pop () , s))
23 i f s . t imeout () :
24 s . l og ('TIMEOUT\n ')
25 break
26 i f qu i t :
27 break
28 # shutdown serve r
29 s . c l o s e ()

In line 19, a thread is created that listens at the �xed port for the whole time the
server is running (line 1 to 7 implement the listen() function). Than the main
loop is entered, in which the queue (conList) is processed. A thread is created for
each item in the queue (line 22).
The chatserver is implemented as a class ChatServer, that provides the communi-
cation functionality.
Since the chatserver is needed only on rare occasions, the server should only be
started, when a user enters the chatroom. Therefore, the client checks with every
request if the server is running or not, and if not starts it up (see listing 9).

Listing 9: startupChatServer() provided by the security module
1 def s tartupChatServer (user) :
2 """
3 check i f the chat−s e r v e r i s running , i f not s t a r t i t
4 """
5 import socket , os
6 s = socket . socke t (socke t .AF_INET, socket .SOCK_STREAM)
7 try :
8 s . connect ((CHAT_SERVER_ADDRESS, CHAT_SERVER_PORT))
9 except :
10 f a i l u r e = os . popen (LIB_DIR+' cha t s e rv e r . py ')
11 i f f a i l u r e : return 1
12 s . send ('STATUS ')
13 s . c l o s e ()
14 return 0

4 IMPLEMENTATION 15

In order for this to work, the server must run in background daemon-mode. Line 10
in listing 9 simply executes the chatserver.py script. If this happens, the code in
listing 10 is executed, starting the chatserver in daemon mode using the os.fork()
function.

Listing 10: daemon wrapping in chatserver.py
1 ### daemon−wrapping
2 i f __name__ == '__main__ ' :
3 try :
4 pid = os . f o rk ()
5 i f pid > 0 :
6 sys . e x i t (0) # ex i t f i r s t parent
7 except OSError , e :
8 print >>sys . s tde r r , " f o rk #1 f a i l e d : %d (%s) " %\
9 (e . errno , e . s t r e r r o r)
10 sys . e x i t (1)
11
12 # decoup le from parent environment
13 os . chd i r ("/") ; os . s e t s i d () ; os . umask (0)
14
15 # do second fo rk
16 try :
17 pid = os . f o rk ()
18 i f pid > 0 :
19 # ex i t from second parent , p r in t even tua l PID be fo r e
20 # pr in t "Daemon PID %d" % pid
21 sys . e x i t (0)
22 except OSError , e :
23 print >>sys . s tde r r , " f o rk #2 f a i l e d : %d (%s) " %\
24 (e . errno , e . s t r e r r o r)
25 sys . e x i t (1)
26
27 main () # s t a r t the daemon main loop

The server shuts down either when the timeout is reached, or a QUIT request is sent
by a client.
The relevant parts of the client can be found in listing 11.

Listing 11: htmlchat.py - relevant parts
1 s tartupChatServer (user)
2
3 ### −− STARTING REAL STUFF
4 i f ' c h a t f i e l d ' in form . keys () :
5 """
6 d i sp l ay the i n l i n e−ob j e c t c h a t f i e l d
7 """
8
9 scope ['CHAT_CONTENT'] = getCurrentChatContent (user)#. s p l i t ('\n ')
10 printHTMLPart (' cha t_f i e l d ' , scope)
11 else :
12 """
13 d i sp l ay the whole chat−form
14 """
15 printHTMLPart (' upper ' , scope)
16 scope ['CHAT_FIELD'] = WEB_CGI_ROOT+' htmlchat . py? user=%s&stamp=%s\
17 &ch a t f i e l d=1 '%(user , code)
18
19 i f ' post ' in form . keys () :
20 i f postChatEntry (user , form [' post '] . va lue) :
21 print "<H3>Error , did not post your message !</H3>"
22 printHTMLPart (' chat_wrap ' , scope)
23 printHTMLPart (' lower ' , scope)

5 ADMINISTRATION - FRAENDZ.ADMIN 16

The client script htmlclient.py can be called with a di�erent set of parameters. If
the parameter chatfield is included, only an inline frame-object is displayed. This
part of the script is called repeatedly by a self-refreshing webpage that is provided
by the rest of the script. Following this method, only the frame object instead of
the complete webpage must be refreshed, thus saving time and providing a more
coherent design.

5 Administration - fraendz.admin

Since FrÄndz was designed for a relatively small and intimate circle of friends, there
is no possibility for users to sign up themselves. Therefore, a webinterface for easy
administration is provided.
Once a user has been labeled as �adminable� (using the tool adminsettings.py),
this user will �nd a link to the admin-area.

5.1 Tools

In the directory fraendz/tools, I provided a couple of tools that should ease the
administration of the system. This is a list of all currently available tools and their
functions:
adminsettings.py set the administrator password and which users

are adminable

build_fortunefile.py build a �le of some quotations for the use of
template.fortune() (the original program is
not used as to keep down the dependencies)

get_variables.py prepares a list in latex or HTML of all cur-
rently available fraendz-variables by reading out
the source code at runtime

install.py installation script (interactive)

setpermissions.py helper to set the permissions

useradd.py add a user

userdel.py delete a user
The tool useradd.py provides the possibility of adding a new user, while userdel.py
does the opposite. When removing users, care should be taken, that if the complete
user directory of this user is removed, the complete functioning of the system could
be impaired if the user has currently undertaken activities in the system (the forum
and the news for example retrieve information about the author from the users
directory). In future versions this will be �xed.

6 FUTURE PLANS 17

6 Future Plans

� move all users-stu� to a SQLite database,

� provide transparent database use, so that either SQLite or MySQL can be
used,

� provide an english translation of the templates,

� extend FrÄndZ to an online-service, so that people can �apply� for an own
FrÄndZ environment via internet (multiple databases → SQLite!).

	What is FrÄndz?
	Installation
	Script-based Installation
	Manual Installation

	Structure of the FrÄndz-package
	Implementation
	Configuration - fraendz.config
	Templates - fraendz.template
	Security - fraendz.security
	Storage - fraendz.userio
	Chat - fraendz.chatserver

	Administration - fraendz.admin
	Tools

	Future Plans

